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Abstract

We present a novel algorithm to detect and remove
cast shadows in a video sequence by taking advantage of
the statistical prevalence of the shadowed regions over
the object regions. We model shadows using multivari-
ate Gaussians. We apply a weak classifier as a pre-
filter. We project shadow models into a quantized color
space to update a shadow flow function. We use shadow
flow, background models, and current frame to deter-
mine the shadow and object regions. This method has
several advantages: It does not require a color space
transformation. We pose the problem in the RGB color
space, and we can carry out the same analysis in other
Cartesian spaces as well. It is data-driven and adapts
to the changing shadow conditions. In other words,
accuracy of our method is not limited by the preset val-
ues. Furthermore, it does not assume any 3D models
for the target objects or tracking of the cast shadows
between frames. Our results show that the detection
performance is superior than the benchmark method.

1. Introduction

Cast shadows poses one of the most challenging
problems in many vision tasks, especially in object
tracking, by distorting the true shape and color prop-
erties of the target objects. They correspond to the
areas in the background scene that are blocked from
the light source. It is essential to eliminate only cast
shadows since removal of self shadows, which are the
parts of the object that are not illuminated, will result
in incomplete object silhouettes.

After all, what is a shadow? There are a number
of cues that indicate the presence of a shadow. For
instance, pixel luminance within the shadow regions
decrease, when compared to the reference background.
Shadows retain texture of the underlying surface under
general viewing conditions, thus, the intensity reduc-
tion rate changes smoothly between neighboring pixels.

Furthermore, it is also true that most shadow regions
do not have strong edges [1]. Spatially, moving cast
shadow regions should adjoin to the objects.

Most of the current shadow removal approaches are
based on an assumption that the shadow pixels have
the same chrominance as the background but are of
lower luminance. For instance, Horprasert et al. [2],
classify a pixel into one of the four categories depend-
ing on the distortion of the luminance and the amount
of the chrominance of the difference. Stauder [3] pro-
vided a similar approach by verifying the above criteria
by integrating a color model similar to Phong. Mikic
et al. [4] classified pixels on the basis of a statistical
method. Some approaches ([5]) prefer remapping of
the color space since a shadow cast on a background
does not change significantly its hue. Finlayson [6] has,
in fact, pioneered recovery of an invariant image from
a 3-band color image. The method devised finds an in-
trinsic reflectivity image based on assumptions of Lam-
bertian reflectance, approximately Planckian lighting,
and fairly narrowband camera sensors. Jiang et al. [7]
also made use of an illumination invariant image. If
lighting is approximately Planckian, then as the illu-
mination color changes, a log-log plot of (R/G) and
B/G) values for any single surface forms a straight line.
Thus lighting change reduces to a linear transforma-
tion along an almost straight line. One of the approxi-
mately illumination invariant spaces devised by Gevers
et al. [8] is first used to transform the color space. This
color space is approximately invariant to shading and
intensity changes, albeit only for matte surfaces under
equi-energy white illumination.

Other approaches perform image segmentation.
Javed et al. [9] divided the potential shadow region
into sub regions. Each shadow candidate segment and
its respective background the gradient’s are correlated.
If the correlation results in more than a threshold then
the candidate segment is considered a cast shadow, and
is removed from the foreground region. One obvious
drawback is that not all images contain statistically
significant amount of object surfaces corresponding to
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Figure 1. Normalization of color space cannot always
remove shadows. Images are transferred from RGB
to rgb. Shadow is removed and pedestrian can be
detected (left), however shadows are amplified and
vehicles have now similar colors as shadows (right).

both directly lit and shadowed pixels. Besides, the
lighting color of the umbra region is not always the
same as that of the sunshine. Sato [10] proposed a
method to remove shadows using a measure of bright-
ness. The image is segmented into several regions that
have the same density and shadow regions are deter-
mined based on the brightness and the color. Baba [11]
extended this idea by applying a maximum and min-
imum value filters, followed by a smoothing operator
the image to get a global brightness of the image. From
the global brightness, he calculate the shadow density.
Salvador [12] presented a shadow segmentation algo-
rithm which includes two stages. The first stage ex-
tracts moving cast shadows in each frame. The second
stage tracks the extracted shadows in the subsequent
frames. Obviously, the segmentation based approaches
inherently degraded by the segmentation inaccuracies.

On the other hand, Zhao [13] proposed a geometrical
approach by assuming the shadow of an ellipsoid on the
ground. Any foreground pixel which lies in the shadow
ellipse and whose intensity is lower than that of the
corresponding pixel in the background by a threshold
is classified as a shadow pixel.

Unfortunately, the assumptions of these approaches
are difficult to justify in general. Detection based on
the luminance based criteria will fail when pixels of
foreground objects are darker than the background and
have a uniform gain with respect to the reference sur-
face they cover. Color space transformations are defi-
cient if background color is gray as in Fig. 1. Geomet-
rical shadow models depend heavily on the view-point
and object shape. It is not possible to achieve robust
shadow elimination for a wide spectrum of conditions
with several predefined parameters. Another main lim-
itation of these methods is that they do not adapt to
different types of shadow, e.g. light (due to ambient
light source), heavy (due to strong spot lights).

One key observation is that cast shadows constitute
a “prevalent” change in such scenarios. In other words,
color change at a pixel due to objects has higher vari-
ance (since objects may be in different colors) in com-

parison to the color change due to cast shadows. For
a pixel, cast shadows cause identical background color
change. However, color changes caused by object mo-
tion will not be same in case object colors are different,
which is the usual case.

To address the disadvantages of the above tech-
niques, we propose a recursive learning based method
that models the color change induced by shadows in
terms of multivariate Gaussians for surveillance set-
tings. We take advantage of the above observation,
and train models for shadow changes at each pixel in
addition to the set of background models. We use mul-
tiple models, and these models are updated with each
frame. Thus, if the lighting condition (as a result, the
shadow properties) changes, these models will dynam-
ically adapt themselves to the new condition.

We update the shadow models of a pixel if only that
pixel is labeled as a shadow by a weak shadow classi-
fier, which serves as a pre-filter for the global evalua-
tion. Our data-driven method recursively adapts the
shadow models. In other words, the accuracy of our
method is not limited by the preset values, which was
a major drawback of the existing approaches. The ac-
curacy of our method improves as it processes frames
that contain shadows. Furthermore, our method does
not require tracking of shadow regions. Our method
requires no special color space; we pose the problem in
the RGB color space, and we can carry out the same
analysis in other Cartesian spaces as well. Besides, no
3D models of the target objects is necessary.

In the following section, we explain the weak clas-
sifier and model update mechanism. In section 3, we
present experimental results that show the effectiveness
of the proposed method.

2. Learning Cast Shadows

A flow diagram of the proposed method is shown
in Fig. 2. Let the color of the current image be It(p),
where p is a pixel. We train two sets of models: back-
ground Bn

t (p) and shadow Sm
t (x), where n and m are

number of models for the background and shadow, re-
spectively. We perform our operations in the RGB
color space.

First, we estimate a reference model (background)
for the stationary part of the scene and compare the
current frame with the background to determine the
changed regions (foreground) in the image, which may
contain both objects and their moving cast shadows.
We use background subtraction that is the most com-
mon approach for discriminating a moving object in a
relatively static scene to find foreground pixels

As we explain in the next section, we define each
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Figure 2. Each frame updates the background mod-
els. Using the pixels detected as shadow by the weak
classifier, we refine the shadow models and compute
shadow flow, which will then steer the weak classifier.

Figure 3. Shadow model confidence.

pixel as layers of multivariate Gaussians. We refer
“layer” as the set of ordered models of all pixels with
respect to model condifences. Each layer corresponds
to a different appearance of the pixels. The most con-
sistent of these layers constitute the background. To
find foreground pixels, we compare the current image
to the background layers.

We apply a weak shadow classifier that evaluates
the color and spatial changes the foreground pixels un-
dergo. This classifier basically defines a range of pos-
sible colors with respect to the background color, and
iteratively updates pixel labels using a local consistency
of given labels. If a pixel p is detected as foreground
and its color is in the weak classifier’s range then we
update the shadow models Sm

t (p) of the pixel p as il-
lustrated in Fig. 5.

Bayesian update computes a confidence score for
each shadow model. We determine the most confident
shadow model S∗

t (p) for each pixel. We compare the
most confident shadow model S∗

t (p) with the most con-
fident background model B∗

t (p) and compute a dispar-
ity vector S∗

t (x,µ)−B∗
t (p, µ), where µ is the mean of

the model.

Figure 4. Weak shadow is defined as a conic volume
around the corresponding background color of pixel.

We project the disparity vectors into the quantized
color space, in which each bin represents a color value
visible in the background. Note that, more than one
disparity vectors may be assigned to each bin since
there may be same color pixels with different dispar-
ities in the background. We aggregate disparity vec-
tors weighted by the model confidences (Fig. 3) and
compute their mean Ft(c,µ) and variance Ft(c, σ) at
each bin c to obtain a shadow flow Ft(c,µ) as shown
in Fig. 7. Note that, shadow flow vectors for differ-
ent shadow types and different backgrounds are dif-
ferent. This is another reason why the shadow elim-
ination should be data-drive. The shadow projection
projection also enables us to remove the inconsistent
or erroneous shadow detection results.

To find the shadow pixels in the foreground, we
back-project the shadow flow Ft(c) to a shadow im-
age SIt(p) = Ft(B∗

t (p),µ) using the background image
(Fig. 6). Finally, we compare the current foreground
pixels and the shadow image to determine the shadow
pixels using the shadow color variance Ft(c, σ). Fig-
ure 8 shows a single shadow bin, the corresponding
shadow flow vector (blue) and color changes for the
current image. It is possible to use the shadow flow to
determine the quality of foreground estimation.

This refinement process continues for the next image
in the video sequence.

2.1 Weak Shadow Classifier

Weak shadow classifier evaluates each foreground
pixel and decides whether it is a shadow pixel or be-
longs to an object. Here, we do not make a final deci-
sion; but we select pixels that will be used to update
the multivariate shadow models in the next step.

To find foreground pixels, we measure the Maha-
lanobis distance between the the pixel color and the
mean values of confident background layers. Pixels
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Figure 6. First row: Most confident background layer B∗
t , second row: most confident shadow layer S∗

t , third
row: shadow image SIt, .

that are outside of 99% confidence interval of all con-
fident layers of the background are considered as fore-
ground pixels.

First, we determine whether a pixel is a possible
shadow pixel by evaluating the color variation as in [2].
We assume that shadow decreases the luminance and
changes the saturation, yet it does not affect the hue.
The projection of the color vector to the background

Figure 5. A simple illustration of background and
shadow model update in 1D. We update the shadow
models if only the pixel is classified as shadow by the
weak classifier.

color vector gives us the luminance change h

h = |I(p)| cos φ (1)

where φ is the angle between the background B∗
t (p) and

It(p). We define a luminance ratio as r = |B∗
t (p)|/h.

We compute a second angle φB between the B∗
t (p) and

the white color (1, 1, 1). For each possible foreground
pixel obtained, we apply the following test and classify
the pixel as a shadow pixel if it satisfies both of the
conditions

φ < min(φB , φ0) , r1 < r < r2 (2)

where φ0 is the maximum angle separation, r1 < r2

determines maximum allowed darkness and bright-
ness respectively. Thus, we define shadow as a conic
around the background color vector in the color space
(Fig. 4). Those pixels that satisfy the above conditions
are marked as possible shadow pixels, the rest remains
as possible foreground.

At the second stage, we refine the shadow pixels by
evaluating their local neighborhood. If the illumination
ratio of two shadow pixels are not similar than they
assigned as unclassified. Then, inside a window the
number of foreground C, shadow S, and unclassified
pixels U are counted for the center pixel, and following
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Figure 7. Shadow flows of two different sequences.

rules are applied iteratively: (C > U)∧(C > S) → C,
(S >U)∧(S >C)→S, and else U . The shadow removal
mechanism is proved to be effective and adjustable to
the different lighting conditions.

Using the shadow flow, we adapt the above parame-
ters of the weak classifier using simple α-blending after
we aggregate the flow vectors for all color bins.

After we select the shadow pixels, we refine our mul-
tivariate shadow models using a Bayesian update tech-
nique that is explained in the next section. Note that,
we use the same update mechanism for the background
models as well. With this mechanism, we do not de-
form our models with noise or foreground pixels, but
easily adapt to smooth intensity changes. Embedded
confidence score determines the number of layers to be
used and prevents unnecessary layers. Using Bayesian
approach, we are not estimating the mean and vari-
ance of the layer, but the probability distributions of
mean and variance. We can extract statistical infor-
mation regarding to these parameters from the distri-
bution functions.

0.3

0.5

0.3
0.5

0.3

0.5

red
green

bl
ue

Figure 8. Shadow flow (blue) and current image
color change vectors (red) corresponding to a single
color bin of the background image.

2.2 Bayesian Update

Instead of a “mixture” of Gaussian distributions, we
define each pixel as “competitive” layers of multivari-
ate Gaussians. Each layer corresponds to a different
appearance of the pixel. Our update algorithm main-
tains the multimodailty of the background model. At
each update, at most one layer is updated with the
current observation. This assures the minimum over-
lap over layers. We also determine how many layers
are necessary for each pixel and use only those layers
during foreground segmentation phase. Mean µ and
variance Σ of the pixel color history are assumed un-
known and modeled as normally distributed random
variables. To perform recursive Bayesian estimation
with the new observations, joint prior density p(µ,Σ)
should have the same form with the joint posterior den-
sity p(µ,Σ|X). Conditioning on the variance, joint
prior density is written as:

p(µ,Σ) = p(µ|Σ)p(Σ). (3)

Above condition is realized if we assume inverse
Wishart distribution [15] for the covariance and, con-
ditioned on the covariance, multivariate normal distri-
bution for the mean. Inverse Wishart distribution is a
multivariate generalization of scaled inverse-χ2 distri-
bution. The parametrization is

Σ ∼ Inv-Wishartυt−1(Λ
−1
t−1) (4)

µ|Σ ∼ N(θt−1,Σ/κt−1). (5)

where υt−1 and Λt−1 are the degrees of freedom and
scale matrix for inverse Wishart distribution, θt−1 is
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the prior mean and κt−1 is the number of prior mea-
surements. With these assumptions joint prior den-
sity becomes normal inverse-Wishart (θt,Λt/κt; υt,Λt)
with the parameters updated:

υt = υt−1 + n κn = κt−1 + n (6)

θt = θt−1
κt−1

κt−1 + n
+ x

n

κt−1 + n
(7)

Λt = Λt−1 +
n∑

i=1

(xi − x)(xi − x)T +

n
κt−1

κt
(x − θt−1)(x − θt−1)T (8)

where x is the mean of new samples and n is the num-
ber of samples used to update the model. If update is
performed at each time frame, n becomes one.

We use the expectations of marginal posterior distri-
butions for mean and covariance as our model parame-
ters at time t. Expectation for marginal posterior mean
(expectation of multivariate t-distribution) becomes:

µt = E(µ|X) = θt (9)

whereas expectation of marginal posterior covariance
(expectation of inverse Wishart distribution) becomes:

Σt = E(Σ|X) = (υt − 4)−1Λt. (10)
Our confidence measure for the layer is equal to one
over determinant of covariance of µ|X:

C =
1

|Σµ|X| =
κ3

t (υt − 2)4

(υt − 4)|Λt| . (11)

If our marginal posterior mean has larger variance, our
model becomes less confident. Note that variance of
multivariate t-distribution with scale matrix Σ and de-
grees of freedom υ is equal to υ

υ−2Σ for υ > 2. Instead
of multivariate Gaussian for a single layer, it is pos-
sible to use three univariate Gaussians corresponding
to each color channel. In this case, for each univariate
Gaussian we assume scaled inverse-χ2 distribution for
the variance and conditioned on the variance univariate
normal distribution for the mean.

We initialize our system with k layers for each pixel.
Usually we select three-five layers (for both background
and shadow). In more dynamic scenes more layers are
required. As we observe new samples for each pixel we
update the parameters for our background model. We
start our update mechanism from the most confident
layer in our model. If the observed sample is inside the
99% confidence interval of the current model, param-
eters of the model are updated as explained in equa-
tions (6), (7) and (8). Lower confidence models are not
updated. It is also useful to have a depletion mech-
anism so that the earlier observations have less effect

on the model. Depletion is performed by reducing the
number of prior observations parameter of unmatched
model. If current sample is not inside the confidence
interval we update the number of prior measurements
parameter κt = κt−1 − n and proceed with the update
of next confident layer. We do not let κt become very
small. If none of the models are updated, we delete the
least confident layer and initialize a new model with the
current sample.

2.3 Comparison with Online EM

Although our model looks similar to Stauffer’s
GMM’s [14], there are major differences. In GMM’s,
each pixel is represented as a mixture of Gaussian dis-
tribution and parameters of Gaussians and mixing co-
efficients are updated with an online K-means approx-
imation of EM. The approach is very sensitive to ini-
tial observations. If the Gaussian components are im-
properly initialized, every component eventually con-
verges to the most significant mode of the distribution.
Smaller modes nearby larger modes are never detected.
We model each pixel with multiple layers and perform
recursive Bayesian learning to estimate the probability
distribution of model parameters. We interpret each
layer as independent of other layers, giving us more
flexibility.

To demonstrate the performance of the algorithm,
mixture of 1D Gaussian data with uniform noise is gen-
erated. First data set consists of 12000 points cor-
rupted with 3000 uniform noise samples and second
data set consists of 23000 points corrupted with 10000
uniform noise samples. We assume that we observe the
data in random order. We threat the samples as ob-
servations coming from a single pixel and estimate the
model parameters with our approach and online EM
algorithm. One standard deviation interval around the
mean for actual and estimated parameters are plot on
the histogram, in Fig. 9. Results show that, in online
EM, usually multimodality is lost and models converge
to the most significant modes. With our method, mul-
timodality of the distribution is maintained. Another
important observation is, estimated variance with on-
line EM algorithm is always much smaller than the
actual variance. This is not surprising because the up-
date is proportional to the likelihood of the sample, so
samples closer to the mean become more important.

Our confidence score is very effective in determining
the number of necessary layers for each pixel. Although
we estimate the model parameters with five layers, it is
clear from our confidence scores that how many layers
are effective. There is a big gap between significant
and insignificant layers.
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Figure 9. Left: Histograms of Gaussian data corrupted with uniform noise, Middle: Estimation results using
conventional EM algorithm, Right: Using Bayesian update. As visible, EM fails to detect correct modes. (Upper
row: 2-modes, lower row: 4-modes simulations)
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Figure 10. Ratio of foreground pixels detected as
shadow (false-alarm) to ratio of misclassified shadow
pixels (miss). Lower left of the chart is the desired
region (low false-alarms, low misses). SF: proposed
shadow flow, SF+L, with luminance clipping, T is a
benchmark method [2], and T+L its clipped version.

3. Experimental Results

We tested the proposes method with several real
data sequences that contains heavy to light shadow
conditions (to name a few; traffic - heavy - 440 frames,
corner - light- 7200 frames, green - varying - 3100
frames, street - light- 8000 frames).

We used 5 Gaussian models for the background,
however, we assumed the color channels (RGB) are
independent and covariance matrix is diagonal. For
the shadow, we assigned 3 models. We manually
marked the shadow regions in these sequences to gen-
erate ground truth data, which was a tedious task. We
quantize the background color space using 64-bins for
each color channel (a total of 218 bins). The presented
performance scores is similar down to 16-bins, however,
it drops for more severe quantizations.

Using the ground truth we evaluated the perfor-
mance of our algorithm and another algorithm pre-
sented in [2] since this algorithm also uses background
images. Note that, our algorithm does not require
training with ground truth. In Fig. 10 we give the
detection performance, which is obtained by chang-
ing various parameters. We also integrated an ad-
ditional heuristic (luminance clipping) for the bench-
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Figure 11. Sample detection results without any fil-
tering (red: shadow, green: foreground).

mark result since its performance for the above dataset
was comparatively poor. The graph SF (green) and
SF+L shows the ROC curves for the proposed shadow
flow method, and T, T+L are for the the benchmark
method. As visible, the proposed algorithm doubled
the detection accuracy from 20% false-alarms on aver-
age to 10% on average for most miss ratios. We also
want to point out that the benchmark method has a
hard limit, i.e. it can not decrease the false alarms less
than 23% at the equal error rate. On the other hand,
shadow flow method achieves 15% for most of the pa-
rameter assignments, and it always out performs the
benchmark method. In Fig. 11 we show sample shadow
detection results without clipping without any filtering
or morphological operations.

4. Conclusion

In this paper, we propose a shadow removal algo-
rithm for surveillance scenarios. The main contribu-
tion of this work is an adaptive shadow flow method
that learns the properties of cast shadows automati-
cally by using multivariate Gaussians. We also present
an accurate model update mechanism.

This method has several advantages: 1) It does not
require a color space transformation. We pose the
problem in the RGB color space, and we can carry
out the same analysis in other Cartesian spaces as
well. 2) Our data-driven method dynamically adapts
the shadow models to the changing shadow conditions.
In other words, accuracy of our method is not limited
by the preset threshold values, which is a major draw-
back of the existing approaches. The accuracy of this

method improves as it process more video frames. 3)
Furthermore, it does not assume any 3D models for the
target objects or tracking of the cast shadows between
frames.

Our results prove that the shadow flow doubles the
detection accuracy by consistently decreasing the per-
centage of false-alarms.
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